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Probabilistic planning and control
Motivation
Noise in information used for decision making causes uncertainty of action effects.
If we can estimate uncertainty of information – can we improve actions?

Uncertainty types considered
action effects :

I deterministic
I stochastic

perception :
I fully observable
I partially observable

Goal
Ensure robustness not only to current, but also predicted future uncertainty
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Exploration

Exploration (information gathering task)
The direct goal of robot actions is to reduce uncertainty

Examples
I occupancy map building – maximize information about each cell
I find a person – determine location of a person moving in a building
I active localization – improve knowledge of own position
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Methods

I Partially Observable Markov Decision Process (POMDP) – general, but complex
I specialized methods
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Terms

goal – a achieving certain result (state) usually with cost optimization
cost – variable describing motion quality (precision, length, time etc.)

payoff function – function of state and control evaluating cost in a single step

r(x, u)

discount factor (γ ∈ [0, 1]) time dependant coefficient
planning horizon T – main types: 1, finite, infinite
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Terms cont.

cumulative payoff –
T∑
τ=1

γT rt+τ

policy – plan of action

π : z1:t−1, u1:t−1 → ut(orut:t+r)

payoff expectation

RT = E

[
T∑
τ=1

γT rt+τ

]
optimal policy

π? = argmaxπ RT
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Markov Decision Process (MDP)
I for stochastic environment with fully observable state π : x→ u

I greedy optimization T = 1

π1 = argmaxu r(x, u)

with cummulative future payoff

V1(x) = γmax
u

r(x, u)

I finite time T

πT = argmaxu

[
r(x, u) +

∫
VT−1(x

′)p(x′|u, x)dx′
]

with cummulative future payoff

VT (x) = γmax
u

[
r(x, u) +

∫
VT−1(x

′)p(x′|u, x)dx′
]
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MDP Algorithm

MDP value iteration
for all x do
V̂ (x) = rmin
endfor
repeat until convergence
for all x

V̂ (x) = γmax
u

[
r(x, u) +

∫
V̂ (x′)p(x′|u, x)dx′

]
endfor
endrepeat
return V̂

In discrete case: loop over all states
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POMDP
I state are not observable, so they are replaced by posteriors (beliefs, b)
I value function

VT (x) = γmax
u

[
r(b, u) +

∫
VT−1(b

′)p(b′|u, b)db′
]

I optimal policy

πT = argmaxu

[
r(b, u) +

∫
VT−1(b

′)p(b′|u, b)db′
]

I the key of effective implementation is pruning of not useful states
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Approximate POMDP

Complexity of standard POMDP causes it is not practically applicable in robotic tasks

Approximate methods
I QMPD – an algorithm between MDP and POMDP; computes as if the full state

was estimated after first iteration
I Augmented MDP (ADP) – belief represented in low dimensional statistics (for

example state and entropy)
I Monte Carlo MDP (MC-MDP) – similar to particle filter
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Exploration

Information gain
I Expected information E[− log p]

I Entropy of a probability distribution p(x)

Hp(x) = −
∫
p(x) log p(x)dx or−

∑
x

p(x) log p(x)

I BeliefB(b, z, u)

I Conditional entropy

Hb(x
′|z, u) =−

∫
B(b, z, u)(x′) logB(b, z, u)(x′)dx′

or: −
∑
x

p(x) log p(x)
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MC exploration algorithm

set ρu = 0 for all u
for i=1 to N do
sample x ∼ b(x)
for all u do
sample x′ ∼ p(x′|x, u)
sample z ∼ p(z|x′)
b′ = BayesF ilter(b, z, u)
ρu = ρu + r(x, u)− αHb′(x

′)
endfor
endfor
return argmaxu ρu
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